Mark Scheme (Results)

Summer 2013

GCE Chemistry 6CH04/01
General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful. www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035570
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a)}$	C		$\mathbf{1}$
(b)	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(a)	B		$\mathbf{1}$
(b)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5 (a)}$	B		$\mathbf{1}$
$\mathbf{(b)}$	C		$\mathbf{1}$
$\mathbf{(c)}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		$\mathbf{1}$
Question Number Correct Answer Reject Mark $\mathbf{1 1}$ D $\mathbf{1}$ \mathbf{l}			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	D		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
17(a)	Units are not required in (a) or (c) but if used should be correct. Penalise incorrect units in (a), (b) \& (c) once only IGNORE case of J and K order of units First mark: $65.3 / 130.6$ and $69.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Second mark: $\begin{equation*} \Delta \mathrm{S}=69.9-(130.6+102.5) \tag{1} \end{equation*}$ Third mark: $\begin{equation*} \Delta \mathrm{S}=-163.2=-163\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Correct answer with no working scores 3 Ignore SF except 1 SF TE at each stage If 65.3 used instead of 130.6 penalize once (answer is then $\Delta \mathrm{S}=-97.9\left(\mathrm{~J} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right)$	+163 or any positive answer	3

Question Number	Acceptable Answers	Reject	Mark
17(b)	$\begin{align*} & \Delta \mathrm{S}_{\text {surroundings }}=-\Delta \mathrm{H} / \mathrm{T} \text { or just numbers (1) } \tag{1}\\ &=+285800 / 298 \\ &=+959.06=+959 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ &+0.959 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{align*}$ Correct value to 3SF Correct units and positive sign Correct answer with no working scores 3	answer with no sign	3

Question Number	Acceptable Answers	Reject	Mark
17(c)	```\(\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surroundings }}\) Allow \(\Delta \mathrm{S}_{\text {reaction }}\) for \(\Delta \mathrm{S}_{\text {system }}\) \(\Delta \mathrm{S}_{\text {total }}=\) answer (a) + answer (b) \(=-163.2+959\) \(=(+) 795.8=(+) 796\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\) If \(\Delta \mathrm{S}_{\text {surroundings }}=+959.06\) then \(\Delta \mathrm{S}_{\text {total }}=+795.9\)None``` Correct answer with no working scores 2 Ignore SF except 1 SF TE on values in (a) \& (b) no TE on incorrect equation If answer to (a) $=-97.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ $\Delta \mathrm{S}_{\text {total }}=(+) 861.1\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
17(d)	A mixture of hydrogen and oxygen is thermodynamically unstable because $\Delta \mathrm{S}_{\text {total }}$ is positive OR Reaction between hydrogen and oxygen is thermodynamically feasible because $\Delta \mathrm{S}_{\text {total }}$ is positive ALLOW $\Delta \mathrm{S}$ for $\Delta \mathrm{S}_{\text {total }}$ No TE on negative $\Delta \mathrm{S}_{\text {total }}$ from (c) The mixture is kinetically inert / stable or reaction is (very) slow because the activation energy is (very) high Mixture / reaction is kinetically inert / stable but thermodynamically unstable / feasible scores 1 mark IGNORE References to spark / flame providing the (activation) energy for reaction	Reference to the stability of individual elements	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i)}$	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ $(\mathrm{or} \rightarrow)$ ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ Equation (1) \quad states (1) ALLOW for 1 mark $_{\mathrm{HC}_{2} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})}$ States mark is not stand alone but can be awarded if the equation has a minor error e.g. an incorrect charge	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$ OR $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$ No TE on incorrect equation in (a)(i) Penalise incorrect charges in (i) and (ii) once only	$\begin{aligned} & \mathrm{K}= \\ & {\left[\mathrm{H}^{+}\right]^{2} /} \\ & {\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]} \\ & {\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /} \\ & {[\mathrm{HA}]} \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (a) (iii) } \end{aligned}$	No TE on (a)(ii) $\begin{align*} & \mathrm{K}_{\mathrm{a}}=10^{-4.28} \text { OR } 5.24807 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right] \\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} / 0.050 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(0.05 \times 10^{-4.28}\right)=1.61988 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1} \end{align*}$ TE on incorrect K_{a} value $\begin{equation*} \mathrm{pH}=-\log 1.61988 \times 10^{-3}=2.7905=2.8 \tag{1} \end{equation*}$ For final mark TE on algebraic / arithmetical errors providing $\mathrm{pH} \geq 1.3$ Correct answer with no working scores 3 Ignore SF except 1 SF		3

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	IGNORE explanations First mark: $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$/hydrogenethanedioate ion ionization negligible ALLOW Acid for $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ Slight / partial / incomplete / does not dissociate for negligible OR $\begin{equation*} \left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {equilibrium }}=\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {initial }} / 0.050\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Second mark: $\left[\mathrm{H}^{+}\right.$] due to ionization of water negligible OR auto ionization of water negligible OR [H^{+}] only due to ionization of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$/acid OR $\begin{equation*} \left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$ IGNORE references to temperature and to HA and A^{-}	Use of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ OR sodium hydrogen- ethanedioate for hydrogen- ethanedioate ion throughout this item	2

Question Number	Acceptable Answers	Reject	Mark
18(b) (ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_{a} (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate) OR Reverse arguments IGNORE $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ ionization negligible Approximation of negligible ionization invalid / incorrect OR [$\left.\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {equilibrium }}$ not equal to $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {initial }}$ No TE on 18(a)(iii) IGNORE Second ionization occurs	Ethanedioic acid is a strong acid / fully dissociated Just 'approximation invalid'	2

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	```Start pH at 2.8 ALLOW 2-4 \\ Vertical section at \(25 \mathrm{~cm}^{3}\) within pH range 6-11 and 2.5-4 units long \\ end pH (approaching) value in range 12-13 (asymptotically)```	deviation from vertical maximum before final pH	3

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 8 (c) (\text { ii) }}$	First mark: Methyl yellow range $=2.9-4$ and the phenolphthalein range $=8.2-10$ ALLOW pK (methyl yellow) $=3.5$ and pK in (phenolphthalein) $=9.3$ Second mark: (The volumes are different) because ethanedioic acid is dibasic / diprotic / has two replaceable/ acidic hydrogen atoms ALLOW dicarboxylic (acid) (therefore there are two stages to the neutralization)	$\mathbf{2}$			
OR Methyl yellow range coincides with neutralization of first proton and phenolphthalein range coincides with neutralization of second proton	(1)			\quad	(1)
:---					

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	A chiral molecule is non-superimposable on its mirror image / 3D molecule with no plane of symmetry 2-hydroxypropanoic acid has a carbon atom which is asymmetric / has four different groups attached Middle carbon labelled in any clear way e.g. ALLOW asymmetric C described but not labelled IGNORE references to rotation of plane polarized light	just 'nonsuperimposable' just 'no plane of symmetry' Molecules for groups	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (\text { ii) }}$	2-hydroxypropanoic acid formed in muscles is a single (allow pure) enantiomer /(optical) isomer ALLOW Unequal mixture of enantiomers /(optical) isomers (1)	Just "not a racemic mixture"	$\mathbf{2}$
	2-hydroxypropanoic acid formed in milk is a racemic mixture / equimolar mixture of the two enantiomers / racemate	Just ‘a mixture of enantiomers'	
If milk and muscles are reversed but the rest is correct, one mark is awarded			

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	First step $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{KOH}(\mathrm{aq})$ or names Second mark dependent on first being correct Second step $\mathrm{HCl}(\mathrm{aq}) /$ hydrochloric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) /$ sulfuric acid ALLOW HNO_{3} / nitric acid / dil $\mathrm{HCl} /\left(\right.$ dil) $\mathrm{H}_{2} \mathrm{SO} 4$ /(dil) HNO_{3} or any strong acid (name or formula) including $\operatorname{HBr}((\mathrm{aq}))$ and $\mathrm{HI}((\mathrm{aq}))$ IGNORE Omission of (aq) and references to temperature Ethanolic /alcoholic solutions ALLOW One mark for correct two reagents in the wrong order One mark for 'alkali / OH^{-}followed by acid / $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$	OH^{-}/ alkali $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ /acid	2

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	First mark (Stand alone) A racemic mixture is not formed OR More of one enantiomer /(optical) isomer is formed OR Only one enantiomer /(optical) isomer is formed Second mark (Stand alone) (Some of the) reaction is $\mathrm{S}_{\mathrm{N}} 2$ Third mark (Stand alone) Nucleophile / OH^{-}only attacks from one side of the molecule / from the opposite side to leaving group ALLOW Use of 'intermediate' for 'transition state' in description of $\mathrm{S}_{\mathrm{N}} 2$ Reverse argument based on $\mathrm{S}_{\mathrm{N}} 1$ forming a racemic mixture	Carbocation (for molecule)	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i)}$	Nucleophilic	(1)	
	Addition	(1)	$S_{N} 1 / S_{N} 2$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i i)}$	Cyanide (ion) $/ \mathrm{CN}^{-} / \mathrm{C} \equiv \mathrm{N}^{-} /: \mathrm{C} \equiv \mathrm{N}^{-} /{ }^{-} \mathrm{CN}$	$\mathrm{HCN} / \mathrm{C} \equiv \mathrm{N}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 19 \\ & \text { (c) (iii) } \end{aligned}$	Both curly arrows Intermediate ALLOW Omission of lone pair Curly arrow from anywhere on nucleophile including from charge or nitrogen Formation of charged canonical form followed by attack of cyanide ion IGNORE $\delta+/ \delta$ - even if unbalanced	Omission of charges (penalise once only) Full charges on ethanal $-\mathrm{C}-\mathrm{NC}$ in intermediate	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (c) (iv)	Racemic mixture / equal amounts of the two enantiomers / racemate formed Stand alone mark CHO / aldehyde group is (trigonal) planar (1) ALLOW ethanal / molecule is (trigonal) planar	(1)	Intermediate /carbonyl group /C_O is planar

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (d) (i)}$	Any value /range within the range $3750-2500 \mathrm{~cm}^{-1}$ due to $\mathrm{O}-\mathrm{H} / \mathrm{OH} /-\mathrm{OH}$ IGNORE $\mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H} /$ carboxylic acid	Wavenumbers alone OH in alcohol	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
19(d) (ii)	These three marks are stand alone Q is due to $\mathrm{C}=\mathrm{O}$ The ($\mathrm{C}=\mathrm{O}$) aldehyde range is $1740-1720 \mathrm{~cm}^{-1}$ and ($\mathrm{C}=\mathrm{O}$) carboxylic acid range is $1725-1700 \mathrm{~cm}^{-1}$ So the peaks / absorptions cannot be used to distinguish these two compounds because they overlap. OR The (broad) absorption Q covers both the aldehyde and the carboxylic acid ranges ALLOW 'too close'/‘quite similar' for 'overlap'	Carboxylic acid / COOH group Just 'cannot be used to distinguish the compounds'	3

Total for Question 19 = 26 Marks
Total for Section B = 51 Marks

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	(Sodium thiosulfate) (rapidly) reacts with / reduces the iodine (as it is formed) (1)	iodide / I	

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	(From 2 to 1) $\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{2-}\right.$] doubles ([$\left.\mathrm{I}^{-}\right]$unchanged) and rate doubles / time halves so order wrt $\begin{equation*} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{8}{ }^{2-}=1 \tag{1} \end{equation*}$ (From 3 to 1) [\mathbf{I}^{-}] doubles ($\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}]}\right.$ unchanged) and rate doubles / time halves so order wrt $\mathbf{I}^{-}=1$ OR (if first mark awarded) (From 3 to 2) [$\left.{ }^{-}\right]$doubles ($\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}}\right.$] halved) and rate unchanged so order wrtil${ }^{-}=1$ Penalise omission of concentration/square brackets once only $\begin{equation*} \text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right] \tag{1} \end{equation*}$ Third mark stand alone if no working \& TE on incorrect orders IGNORE case of k	Rate equation $=$	3

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	First mark Colorimetry /Use a colorimeter Second mark Measure transmittance / absorbance (at various times) Third mark (Use a calibration curve to) convert transmittance / absorbance into concentration. OR transmittance / absorbance proportional to concentration ALLOW Colorimetry may be used because iodine (solution) is coloured (and other reagents are colourless) / to measure intensity of the iodine colour ALLOW (for the same three marks) Electrical conductivity Measured at various times / (use a calibration curve to) convert conductivity into concentration. Conductivity reduces as reaction proceeds because 3 mol ions converted to 2 mol ions / fewer ions on right hand side	Sampling methods calorimeter pH meter Just conductivity changes	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i)}$	$\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right] /\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] /$ [peroxodisulfate] / $[$ persulfate $]$ remains (approximately) unchanged during the reaction.	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ in excess. $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right]$ etc does not affect the rate	$\mathbf{1}$
	OR	Only $[\mathrm{KI}] /$ $\left[\mathrm{I}^{-}\right]$affects the rate	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i i)}$	Plot a graph of concentration (of iodine/I ${ }_{2}$) (on the y axis) against time (1)		$\mathbf{2}$
	Measure the initial gradient / gradient at t=0 (1) 'Plot a graph and measure the initial gradient / gradient at $\mathrm{t}=0$ ' alone scores second mark		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i v)}$	TE on 20(a)(ii) on numerical answer and appropriate units	8 $8.75 \times 10^{-5}=\mathrm{k} \times 2.0 \times 0.025$ $\mathrm{k}=8.75 \times 10^{-5} /(2.0 \times 0.025)$ $=1.75 \times 10^{-3}$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW units in any order Correct answer including units with no working scores 2	(1)

Question Number	Acceptable Answers	Reject	Mark
20(c)(ii)	$\begin{align*} \text { Gradient } & =-(-3.50--5.27) /(0.00333-0.00294) \\ & =(-) 4538=(-) 4500 \tag{1} \end{align*}$ ALLOW values from (-)4300 to (-)4700 gradient value negative $\begin{align*} \mathrm{E}_{\mathrm{a}} & =- \text { gradient } \times \mathrm{R}=--4538 \times 8.31 \tag{1}\\ & =(+) 37700 \mathrm{~J} \mathrm{~mol}^{-1}\left(=(+) 38 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ TE on value of gradient even if it is positive -4300 gives 35.7; -4700 gives 39.1 Correct units Correct answer from the gradient calculation with units scores final 2 marks BUT correct answer with units but no gradient calculation scores units mark only		4

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

